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The supersonic flow past a thin straight circular cylinder is investigated. The 
associated boundary-layer flow (i.e. the velocity and temperature field) is computed ; 
the asymptotic, far downstream solution is obtained, and compared with the full 
numerical results. 

The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is 
also studied. A so-called ' doubly generalized ' inflexion condition is derived, which is 
a condition for the existence of so-called ' subsonic ' neutral modes. The eigenvalue 
problem (for the complex wavespeed) is computed for two free-stream Mach numbers 
(2.8 and 3.8), and this reveals that curvature has a profound effect on the stability 
of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature 
is introduced, whilst the second (and generally the most important) mode suffers a 
substantially reduced amplification rate. 

1. Introduction 
The current and proposed development of high-speed flight vehicles has rekindled 

the general research effort into supersonic and hypersonic flows. One of the key areas 
of aerodynamic study is that of boundary-layer stability/transition to turbulence. In 
the case of compressible flow, Tollmien-Schlichting, Gortler and inviscid instabilities 
are all possible. 

The problem of the stability of axisymmetric flows is of obvious relevance to flight 
vehicles, for example to the flow over fuselages, engine clowlings and small 
projectiles. In a recent paper Duck & Hall (1989) used triple-deck theory to consider 
the linear (and weakly nonlinear) viscous instability of an axisymmetric boundary 
layer in a supersonic flow to axisymmetric instabilities. It was found that viscous 
modes can exist in pairs (i.e. for a given body radius, there exist two neutral 
wavenumbers with two corresponding wavespeeds), and that at a given Mach 
number, such modes occur only for a body radius less than a critical value 
(dependent on Mach number). 

In a second paper, Duck & Hall (1990) went on to consider non-axisymmetric 
viscous disturbances. These were generally found to be more important than 
axisymmetric viscous modes (possessing generally larger growth rates and occurring 
at larger body radii), whilst again it was found that neutral modes existed in pairs 
at body radii less than some critical value (dependent on the Mach number and 
azimuthal wavenumber). 

However, it is generally found in the case of supersonic flows that inviscid 
disturbances are more important than viscous disturbances (this is in contrast to 
many incompressible flows where viscous instabilities are dominant). 

One of the earliest attempts to study inviscid compressible stability was made by 
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Kiichemann (1938) ; in this study, the temperature gradient and the curvature of 
velocity profile (together with the effects of viscosity) were both neglected, 
assumptions which it turns out cannot be properly justified. The work that provided 
a key to understanding this type of instability was Lees & Lin (1946), in which an 
asymptotic approximation was developed, analogous to the incompressible work of 
Lin (1945a, b, c ) .  It was found that the quantity @lay*)  (p*au*/ay*) (where u* 
denotes the velocity tangential to the surface, y* the coordinate normal to the 
surface, and p* the fluid density) plays a key role, very similar to that of azu*/ay*2 
in incompressible theory, and as such may lead to a ‘generalized inflexion point ’ type 
of instability if this quantity is zero. It was shown that unlike incompressible 
Blasius-type layers, the flat-plate compressible boundary layer can be unstable to 
purely inviscid modes. This (two-dimensional) work on compressible boundary layers 
was then extended to three dimensions by Reshotko (1962). 

However, the major differences between incompressible and compressible theory 
were not fully uncovered until extensive numerical calculations were possible. The 
first of these, by Brown (1962), was followed by a series of computational studies by 
Mack (1963, 1964, 1965a, b ,  1969, 1984, 1987). A further important difference with 
incompressible results was then revealed, namely that compressible theory predicts 
an infinite sequence of additional modes. These are referred to as higher modes, and 
are of great importance for boundary layers since it is the first of these (the so-called 
second mode) that is often the most unstable according to inviscid theory. 

In the light of this numerical work, the prediction of Lees (1947), that cooling the 
wall acts to stabilize the boundary layer, turns out to be a little misleading (cooling 
can actually destabilize the flow, according to Mack 1969, 1984, 1987) ; in this case, 
although the ‘generalized inflexion point ’ of the profile may disappear with cooling, 
these additional modes persist. 

In the light of this work on planar boundary layers, we now turn to consider the 
inviscid axisymmetric stability of the boundary layer on a straight circular cylinder, 
the generators of the cylinder lying parallel to the flow. In  particular we wish to 
investigate the effect curvature plays on the stability of the flow, and so we postulate 
that (generally) the radius of the body is of the same order of thickness as the 
boundary layer. Consistent with this we choose to prescribe planar conditions a t  the 
‘leading edge’ of the cylinder, although the techniques to be described could be 
readily extended to other leading-edge conditions (e.g. ‘rounded tips ’). This 
approach may be fully justified if we restrict our attention to thin cylinders. 

2. Equations of motion/state 
We take the z* axis to coincide with the axis of the cylinder, r* the radial 

coordinate, and B the azimuthal angle. a* is the radius of the cylinder, which is taken 
to be independent of both z* and 8. The velocity vector is taken to be u* = (v:, v:, v:) 
in the ( r* ,B ,z*)  directions respectively, and T* to be the temperature of the fluid. 
Throughout we assume the flow to be completely independent of 8, and it is also 
assumed that the azimuthal velocity component vt = 0. The (full) equations (in the 
cylindrical system) of continuity, momentum and energy, are, respectively (see -. 

ap* a * * +P*u: a at*+,,,(P v1) r * + , Z , ( P * V $ )  = 0, 

Thompson 1972) 
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Here p* denotes the density of the fluid, p* the pressure, c p  the specific heat at 
constant pressure, K* the coefficient of heat conductivity. The Eulerian operator is 

and the viscous stress components (assuming Newtonian flow) are 

c,,,. = 2p*--1-+A*V.v*, av* 
ar* 

av* c,*,, = 2p*>+A*V.v*, az* 

z,,,, = c,,,, = p* [:: >+-J 3 
The dispersion function r* is defined to be 

r* = 2p*[D:*,* + D$,* + 20,2,,,] + (A* -$*) (V * v * ) ~ ,  

where the rate-of-deformation tensors are 

av; 
D,,,, = -, ax* 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

p* denotes the first coefficient of viscosity, and A* the bulk viscosity. 
We now go on to assume a perfect gas equation of state, namely 

p* = p*R*T* (2.13) 

(where R* is the gas constant). We also assume that p* is solely a function of T* (to 
be prescribed later). 

The surface of the cylinder lies along r* = a*, z* + 0, along which we set v* = 0. 
If we assume that the surface of the cylinder is insulated, then 

(2.14) 

Conditions a t  z* = 0 must be specified. For the purposes of this paper, we assume 
that the boundary layer a t  x* = 0 has zero thickness implying that planar conditions 
prevail (for which a similarity solution exists, which therefore provides a universal 
upstream boundary condition) ; a similar assumption was made by Seban & Bond 
(1951) and their comments regarding this assumption are valid here. Further, since 
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the cylinder is taken to be straight and thin, to leading order the far field is taken to 
be uniform, with velocity vector ( O , O ,  U z ) .  The problem is now formally closed, and 
in the following section we go on to consider the basic boundary-layer flow on the 
surface of the cylinder, obtained by an approximation of the governing equations 
detailed above. 

3. The basic flow 
3.1. The boundary-layer approximation 

Here we consider the steady boundary-layer approximation for the basic flow, 
derived from (1.1)-( 1.4). A fundamental (and important) component of this paper is 
the inclusion of curvature terms in the governing equations; we achieve this by 
generally taking the body radius to be of the same order as the boundary-layer 
thickness (a similar approach was adopted by, for example, Seban & Bond 1951 ; 
Glauert & Lighthill 1955; Stewartson 1955; Bush 1976; and Duck & Bodonyi 1986). 

With the formation of a thin boundary layer (comparable in thickness with the 
body radius) we expect the following classical assumptions to hold : 

a a  
-%-, ar* az* (3.1) 

and v; & v: (3.2) 

(these orders will be made more precise shortly). 
We take c p  to be a constant, the pressure to be uniform everywhere (if transverse 

pressure gradients are insignificant). Our crucial assumption (for the purposes of this 
study) is that the body radius is of the same order as the boundary-layer thickness, 
i.e. very thin. One further important consequence of neglecting transverse pressure 
gradients is that the equation of state may be written in the following form: 

where subscript co denotes free-stream conditions. 
We also require a relationship linking the viscosity p* to temperature T*. Here we 

take the simplest form, namely the linear Chapman law (see Stewartson 1964), i.e. 

where C is the Chapman constant (although, here, conceptually, there would be no 
difficulty incorporating more complex viscosity/temperature laws). 

It is now convenient to introduce non-dimensional quantities : 

where Re is the Reynolds number, based on body radius a*, namely 

which must be assumed large if the assumptions (3.1) and (3.2) are to be valid 
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Equations (1.1)-( 1.4) may then be written in the following non-dimensional form : 

Here f~ is the Prandtl number, namely 

fJ = pL*cp 
K* ’ 

(3.10) 

(3.11) 

which in this paper we shall assume to be a constant ; y is the ratio of specific heats, 
and M ,  the Mach number, namely 

M, = u: 
(~R*T:  * 

The boundary conditions are (in the insulated wall case) 

(3.12) 

(3.13) 

The problem is now closed, and we next consider its numerical solution. 

3.2. Numerical solution 
As z+O we specify that conditions become planar (Stewartson 1964) and so we 
expect the solution to become singular. This latter condition renders the problem in 
its present form inappropriate for numerical treatment. Instead we write 

81 = S’v”,fr, CL v3 = 63(7,CL T = %? 61, (3.14) 

with 5 = 2, 7 = ( r -  I)/c. (3.15a, b )  

The ‘hatted’ functions are now expected to be completely regular as C + O ,  
approaching their planar counterparts. Equations (3.7), (3.9), (3.10) then become, 

(3.16) 
respectively, 

PG,, - 8, q -+rl!l%,,, + !&T~,~++rlq G ,  - tCG,  q+ 1 = 0, 
A -  CP8 

1 + d  

(3.17) 
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subject to q = ~  on q = o ,  d , = 6 , = 0  on V = O ,  
? + I  as q+m, d 3 + 1  as q+m. 

(3.19) 

It is possible to define a stream function which would ensure that the continuity 
equation (3.16) is always satisfied; however, in this case, in addition to the order of 
the momentum equation being increased, the coefficients of the equations become 
considerably more complicated. Further, it  does not appear possible to introduce a 
Howarth-Dorodnitsyn (Stewartson 1951 ; Moore 1955) like transformation which in 
the planar case considerably simplifies the governing equations. For this reason it 
was decided to seek a numerical solution to dl, d, and ? directly. Notice that setting 
[ = 0 reduces the system (3.16)-(3.19) to the planar problem, namely the ordinary 
differential system 

?dl,-dl q-;q?d,,+$qqd, = 0, (3.20) 

Gl d,, - ;q;, 6,, = P&,, + 9% d,,, (3.21) 

(again subject to (3.19)). 

6; = d,,, P = q, The variables 

(3.22) 

(3.23) 

were introduced, and the system (3.20)-(3.22) together with (3.23) were written as a 
system of first-order ordinary differential equations, which were then approximated 
by second-order finite differences. The truncated system was then solved by means 
of Newton iteration. At each iteration level, the algebraic system was of block- 
diagonal form, with each block comprising 10 x 5 elements. 

Once the above solution was obtained, the system (3.16)-(3.19) was treated in 
much the same way, with a Crank-Nicolson approximation being used to 
approximate [-derivatives (again the problem was treated as a system of first-order 
equations in y), In  this way, the solution was extended forwards in c. 

Figure 1 (a )  shows the distribution of [-ld,,(q = 0) with [, and figure 1 ( b )  the 
corresponding distribution of ?(q = 0). These results are for M ,  = 2.8, with fluid 
constants u = 0.72, y = 1.4. The [-%,,(q = 0) distribution is singular in the planar 
limit as [ + O ,  and then appears to (slowly) fall continuously as [ increases. The 
?(q = 0) distribution declines slightly from its planar value at [ = 0. 

Results for M ,  = 3.8 (same fluid constants as above) are shown in figure 2(a )  
([-lB,(q = 0) distribution) and figure 2 ( b )  (?(q = 0) distribution) ; these suggest the 
same basic characteristics as the lower-Mach-number results. 

The limit as [+a is of some interest. Although, as indicated earlier, the 
incompressible case in this limit is well documented, the particular details for the 
compressible case do not appear to have been described, although Stewartson (1964) 
speculates that a similar approach to the incompressible case is necessary. In the 
following sub-section we show to a certain extent, that  this is the case. 

3.3. The far downstream flow 

We find it convenient to reconsider the system (3.7)-(3.10) (together with (3.13)) 
when studying the limit of z + a. The incompressible work of Glauert & Lighthill 
(1955), Stewartson (1955) and Bush (1976) suggests that two radial lengthscales are 
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important in this limit, namely r = O(1) and r = O(z;). Following these earlier works, 
we find it convenient to define the parameter 

€ = (+logz)-' 

= (logC)-l, (3.24) 

Guided partly by the incompressible case, we expect the solution for r = O(1) to 
which is necessarily small as z+ co. 

take the following form : 
01 = 0(1/CL (3.254 

v3 = ev3(r, 4 + 0(1/5), (3.25 b )  

T = T'(r, 4 + 0(1/5), (3.25 e )  

where quantities with an overbar are expected to be generally order one. We see 

- 

- 
----- 2.1290 

- 
.% 

1 
FIGURE 1.  (a )  Variation of -ia1(7 = 0) with 5 ;  ( b )  variation of p(7 = 0) with 5. M ,  = 2.8. 

5 
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FIGURE 2. (a )  Variation of -63,,(v = 0) with 5 ;  ( b )  variation of p(7 = 0) with 5. M ,  = 3.8. 

5 

therefore that the corrections here are exponentially small in 8. Substitution of (3.25) 
into (3.7)-(3.10) immediately reveals the result (neglecting O( l/c) terms) 

and 

(3.26) 

(3.27) 
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K Integrating (3.26) yields 
T - = - ,  

Oar r 

where K is independent of r .  Substitution of (3.28) into (3.27) yields 

To facilitate the solution to (3.29) we write 

T =  lnr,  

and so 

This equation is further simplified by the use of a second transformation 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

which is effectively a Howarth-Dorodnitsyn transformation (Stewartson 1964), 
giving 

(3.33) 
a q ,  
-+K2Wm a(y- 1) € 2  = 0. 
aE2 

Consequently % = - ~ ~ 2 M 2 , a ( ~ - 1 ) E 2 E 2 + ~ O R + B 0 ,  (3.34) 

where A ,  and B, are independent of 8, and are functions of E only, such that A ,  and 
B, are (generally) O(1) as E + O ,  i.e. we may write 

A ,  = A,, +€A,,  +“A,, + O(e3),  
B, = B,, +a,, +ao2 + 0 ( € 3 ) .  

(3.35) 

Before proceeding further with this solution, we consider next the outer solution 
where 7 = O(1).  Guided by the above, and also again the corresponding in- 
compressible results, we expect the solution to develop as 

(3.36) 
v3 = l + ~ G ~ ( q ) + O ( e ~ ) ,  

T = 1 + eT3(jl) + 0 ( e 2 ) ,  
Vl = EGl(f) + O ( E 2 ) ,  

and also we have implemented free-stream conditions on v3 and T. 
If q ( r , < )  is to match correctly to (3.35), we must have (to leading order in E )  

Aoo+Boo-~&K2M2,(~- 1 )  a = 1 (3.37) 

(it is now clear that although the first term on the right-hand side of (3.34) is 
notionally O(E*),  its inclusion is essential for a correct matching process, as is the 
second term). Note that we have used the result 

E - F - I n r  as r - too.  (3.38) 

The matching of v3(r, <) with the outer solution is achieved by setting K = 1. 
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The O(c)-corrections to (3.36) are then given by 

(3.39) 

and (3.40) 

Both 7 and R may be regarded as forms of ‘optimal coordinates’, as their use is 
essential for the correct matching of solutions. 

To complete the problem, we now require to specify conditions on r = 1. In the 
insulated wall case, to which the bulk of this paper is devoted, we require 

(3.41) 

and so A,  = A,, = 0. (3.42) 

This implies that 

which leads to 

(3.43) 

(3.44) 

(on account of (3.28)). 
These asymptotic results are indicated as broken lines on figures 1 and 2 for 

comparison with the full numerical results ; the agreement is satisfactorily given the 
relative ‘ largeness ’ of the small parameter E .  

If on the other hand the surface of the cylinder is heated or cooled, i.e. TI,,, is 
specified (to be T, say), then we must have 

B, = T,, (3.45) 

and so to leading order 

A ,  = 1+$~(y-l)M2,-Tw, (3.46) 

giving = - [ 1 + ;U(Y - 1) W, - T,] + O(E’), (3.47) 

1 
together with, = -+O(E). (3.48) 

In the following section we turn our attention to the inviscid instability of flows 
corresponding to the insulated-wall class. 

4. Inviscid disturbances 
4.1. Disturbance equations 

We now seek to determine the effect of a small-amplitude disturbance on the basic 
flow described in the previous section, to determine whether growth/instability can 
occur. We impose a disturbance whose wavelength is generally comparable with that 
of the boundary-layer thickness and therefore also of the body radius (O(a*)), in 
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which case the parallel flow approximation can be fully justified ; this implies that the 
disturbance equations are all inviscid. 

Specifically, a t  a fixed z-station, we write (for example) 

where S is some small (disturbance amplitude) parameter, 

t = (Uz /a*) t* ,  2 = z*/a*, (4.5a, b)  

and so the 2 = O(1) scale is very much shorter than the z = O(1) scale, E is the non- 
dimensional spatial wavenumber, and c the non-dimensional wavespeed, and 

wow = $&., 4, T,(r)  = P ( r ,  4, (4.6) 

where 6, and P are as defined in $3. 
Substituting (4.1)-(4.4) into (1.1)-(1.4) and (1.13), taking the @&)-terms with the 

leading order in R and combining these equations yields the following disturbance 
equation (written in terms of 7 rather than T ) :  

where v" = c$, and E = a/{. Equations (4.7) and (4.8) may be combined to give 

(4.9) 

This equation is a form of the disturbance equation used in compressible jet studies 
(see for example Michalke 1971), and is very similar to the well-known planar 
inviscid equation (Lees & Lin 1946; Reshotko 1962; Mack 1984, for example), except 
for the inclusion of the single curvature term on the left-hand side of the equation ; 
notice that allowing c+ 0 retrieves the planar result. 

On 7 = 0, we require 
$(7 = 0) = 0 (4.10) 

(the impermeability condition). The second condition is that $ is bounded as q +  00. 

This is achieved by taking the 7 + co limit of (4.9) (neglecting exponentially small 
terms, but retaining algebraically small terms to include the effects of curvature), 

(4.11) 

giving (4.12) 

where K,(z,) denotes the modified Bessel function of order n, argument zl, and the 
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sign is chosen such that the real part of the argument is positive to ensure 
boundedness as 7 + co ; $, is a constant. Equation (4.12) also leads to 

p - T  
[ 1 -M2,( 1 - C ) ” i  

(4.13) 

The eigenvalue problem (for the temporal case as considered here) is then, for a 
given a, to find c subject to boundedness as 7 --t 00, and such that the impermeability 
condition (4.10) is satisfied. 

Before carrying out a detailed numerical study of this above eigenvalue problem, 
we turn to study an important condition relating to the existence of certain unstable 
eigensolutions. 

5. The doubly generalized inflexion condition 

inflexion point, where (in our notation) 
In the case of compressibls planar flows, the existence of the so-called generalized 

is of great importance, as shown originally by Lees & Lin (1946) and confirmed by 
Reshotko (1962), Mack (1984, 1987) for example. 

If condition (5.1) is satisfied a t  some point s,, then there exists a neutral solution, 
with wavespeed c ,  such that 

(5.2) c = Wo(Ti),  

provided T , - - W , ( W o - C ) 2  > 0, (5.3) 

for all r. 
for which 

using the terminology described by Mack (1984), where sonic disturbances have 

This is a condition for the existence o f a  so-called neutral subsonic disturbance, i.e. 

l-l/M, < c  < 1+1/M,, (5.4) 

c = 1 f l/Bm, 
and supersonic disturbances have 

(5.5) 

c <  l- l /Mw or c >  l-l/M,. (5.6) 

The condition (5.1) has a further important repercussion, namely that a condition for 
the existence of an amplified disturbanae is that  

(5.7) 

at some 7 > T / ~ ,  where qc is the point a t  which 

w,(7) = 1 -l/B,. (5 .8)  

The question that then arises is what is the effect of curvature on these important 
conditions Z We address this question next. We take (4.9) as our starting point, and 
follow the general approach adopted in the past to tackle inflexional instabilities 
arising in planar compressible flows (e.g. Mack 1984), although here the situation is 
more complicated because of the inclusion of curvature terms. 
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Taking (4.9), dividing through by wo-c, and multiplying by $* (where an asterisk 
denotes a complex conjugate) we obtain 

where 

and 

r = 1 + < ~ ,  

x = T,--M:(wo-c)2. 

(5.9) 

(5.10) 

(5.11) 

If we now subtract its complex conjugate from (5.9) we obtain 

(5.12) 
After some algebra, this may be written as follows: 

(5.13) 
We now focus attention on the limit of the neutral state, i.e. if 

c = c,+ici (5.14) 
then ci -+ 0. 

We may write x* = x in this limit without any difficulty (assuming that the wave 
is not given by either of (5.5), which we shall see is outside of the scope of the 
following). However, we exert some care in the treatment of the right-hand side of 
(5.13), which we now write as 

We now use the following arguments: (i) as ci-fO, the derivative of the term in 
parentheses on the left-hand side of (5.15) is always zero, except possibly a t  the point 
Ti, where w,, = c ;  (ii) the term inside the parentheses must be zero a t  the wall ( r  = l ) ,  
and asymptote to zero a t  infinity if the wave is subsonic; (iii) the right-hand side acts 
as a delta function a t  ri as ci --f 0, unless 

or equivalently 

(5.16) 

(5.17) 

where V i  = (ri- 1)/6 (5.i8) 

(note x(r  = ri) = q). This condition is clearly required in order to avoid a finite jump 
in the term in parentheses on the left-hand side of (5.15), and the subsequent 
contradiction. Equation (5.16) may be viewed as a 'doubly generalized inflexion 
condition', and includes a curvature term, not present in planar studies. 
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We thus see that (5.16) is a necessary condition for the existence of so-called 
subsonic modes. In  the following section we carry out a numerical study of the 
disturbance equations; as we shall see, (5.16) gives us an extremely useful guide to 
the behaviour, nature, and existence of the various modes of instability present. 

6. Solution of disturbance equation 
6.1. Numerical method 

For the purposes of numerical solution, (4.7) and (4.8) were chosen (in preference to 
(4.9)). A fairly straightforward Runge-Kutta scheme was applied to this system, 
with the shooting commencing a t  some suitably large value of 7, with (4.12) and 
(4.13), and the computation proceeding inwards, towards 7 = 0. The impermeability 
condition at 7 = 0 was satisfied by choosing the appropriate value of e (by means of 
Newton's method). 

In a number of computations it was found advantageous to divert the computation 
below the real 7-axis, in particular when (wo - cI was small (if Im {c}  < 0 this procedure 
must be used). A similar technique has been used by Mack (1965), a method based 
on that of Zaat (1958). 

6.2. Doubly generalized injexion point results 
Before presenting details for the eigenvalue problem per se, defined in $4, we return 
briefly to consider further results for the basic flow. It waa shown in $5 how the so- 
called doubly generalized inflexion points are likely to play an important role in the 
stability of the flow. Consequently we return to consider the two examples studied 
in $3.2, namely M ,  = 2.8 and M, = 3.8. In  particular we are interested in the 
existence of doubly generalized inflexion points. 

Figure 3(a) (dotted line) shows the axial variation of position of the doubly 
generalized inflexion points for M ,  = 2.8. The point 5 = 0 corresponds to the leading 
edge of the cylinder, and as such corresponds to the planar case (as a result of our 
basic assumptions). There are two particularly striking features to this distribution : 
( i )  that these points occur in pairs and (ii) there exists a critical value of <, 
downstream of which no such points exist. The upper points are an extension of the 
generalized inflexion point found important in planar cases, whilst the lower points 
rise off the surface of the cylinder 7 = 0, to ultimately merge with the upper branch 
a t  5 x 0.059. It is remarkable how the doubly generalized inflexion points disappear 
at such a small distance downstream of the leading edge. 

It was also shown in $5 how neutral solutions with wavespeed 

c = W o ( 7 J  (6.1) 

will occur, provided l - l / M , < c < l + l / M , ,  

and so in figure 3 ( 6 )  (dotted line) we show the axial distribution of w0(vi) for M ,  = 
2.8. Because of the restriction (6.2) i t  is seen that subsonic inflexional modes of 
instability will only occur for 0 < 5 5 0.047, implying that such modes will 
completely disappear a t  just a distance approximately 0.0022C-'Re body radii 
downstream of the leading edge (although other modes types are certainly possible) ; 
consequently in this case we expect this mode will disappear before the doubly 
generalized inflexion points have merged. There are certain similarities here with the 
effect of cooling of planar boundary layers (Lees 1947; Mack 1987), which causes a 
similar effect on generalized inflexion points. 
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We next turn our attention to results for the higher Mach number considered 
previously, M ,  = 3.8. Figure 3 (a )  (solid line) shows the axial variation of the doubly 
generalized inflexion points in this case; the general characteristics are the same as 
those for M ,  = 2.8 except that the range of 6 for which such points exist is increased. 
The corresponding distribution of wo(vi) is shown in figure 3 (b )  (solid line) ; this too 
is similar to the corresponding M ,  = 2.8 distribution also shown in figure 3 (b ) .  In the 
case of M ,  = 3.8, figure 3 (b )  indicates that neutral subsonic inflexional modes will 
disappear a distance approximately 0.013G-'Re body radii downstream of the leading 
edge. 

We see that the 6-point at which the two inflexion points merge moves significantly 
further downstream as the Mach number increases. We expect this trend to continue 
unabated as the Mach number increases, since (as shown by Mack 1987) the 7- 

FIGURE 3. (a) Variation of transverse positions of inflexion points (7,) with axial location 5. 
(b)  Variation of w o ( ~  = vf) with 5. 
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position of the (planar) generalized inflexion point moves continuously outward with 
an increase in M,.  

Guided by the above observations, we now turn our attention to the eigenvalue 
problem for the two cases M ,  = 2.8 and Mm = 3.8. 

6.3. Growth rate results 

Figure 4(a )  shows the variation of ci with a (where c = cr+ici), for the case M ,  = 2.8, 
at = 0 (and hence corresponds to a planar example). The corresponding results for 
c, are shown in figure 4(b) .  Here, and in all results to follow, neutral points are 
denoted by a cross. These results (which are typical of previous planar results - see 
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for example Mack 1987) show two distinct unstable modes. The first (to be referred 
to as mode I) originates as a sonic neutral disturbance (with c, = 0, c, = 1 - l/Mm) a t  
a = 0, and terminates as a neutral inflexional subsonic mode a t  a x 0.1, where c, = 
w0(q = qi) x 0.66; this mode in fact continues, becoming a decaying mode, with 
ci < 0, although we shall mainly concentrate our attention on growing/neutral 
modes). 

The second mode (to be referred to as mode 11) originates a t  a x 0.4 as a subsonic 
neutral mode with ci = 0, c, = 1 (this may be regarded as a special case of an 
inflexional mode, with the generalized inflexion point occurring in the free stream). 
This mode then terminates a t  a x 1.13 as a (second) neutral subsonic inflexional 
instability (and at values of a greater than this value continues as a decaying mode, 
with ci < 0). 

Although other modes of instability undoubtedly exist a t  this Mach number, these 
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have considerably smaller growth rates than modes I and I1 shown here, and are 
consequently much less important from a practical point of view. Note that since the 
(temporal) growth rate is aci, mode I1 is the most important. 

We now turn to results incorporating the effects of curvature. Figures 4(c) and 
4 ( d )  show distributions of ci and c, (respectively), with a (for M ,  = 2.8), a t  6 = 0.02. 
Although the qualitative features resemble those of the 6 = 0 case, the maximum of 
the growth rates is seen to be considerably reduced (in spite of the smallness of C), 
particularly that of mode I. 

A further effect of curvature, just perceptible, is that the lower limit of mode I, 
which in the planar case corresponds to a sonic neutral mode, with a = 0 and c = 
1 - l/M,, is slightly shifted along the u-axis, being neutral a t  a very small positive 
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value of a. Although the c, at this point was very close to being sonic, the indications 
from the computations were that this lower neutral point had become very slightly 
supersonic. 

Moving further down the axis of the cylinder, to g = 0.04, figures 4 ( e )  (ci 
distribution) and 4 (f ) (c, distribution) indicate that mode I has practically 
disappeared, whilst the maximum growth rate of mode I1 is ROW significantly 
diminished, terminating (at a subsonic inflexional neutral point) at quite a large 
value of a ( x 2.65), although over much of the range of a this mode has exceedingly 
small growth rates. The computations also indicate that the lower neutral point of 
mode I has moved further along the real a-axis (compared to the g = 0.02 results). 

Following our comments in the previous subsection regarding 2oo( Ti) dropping 
below 1 - l/Mm, we expect mode I to completely disappear at x 0.047 for this 
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choice of M,. As a consequence, the next set of results (at [ = 0.05) presented in 
figures 4(g) (ci) and 4(h)  (c,, shown as a solid line) shows just mode 11, which itself 
exhibits a further reduction in growth rate. This mode still originates as a neutral 
mode with c, = 1 (at a x 0.45) ; unfortunately our computations did not indicate a 
clear neutral solution at an upper value of a. This was due to the exceedingly small 
growth rates encountered, which were typically O( IO-lO), and hence were comparable 
with the round-off associated with the computation. (In the regime of larger a and 
very small growth rates, it was found to be most essential to deform the integration 
contour in the numerical scheme, as described in $6.1, in order to maintain numerical 
accuracy.) If a neutral point exists, as seems likely, it must be of the neutral 
supersonic class (ci = 0, c, < 1 - l / M , )  because of the absence of any doubly 
generalized inflexion points at this value of 5. 

As a final example of the M ,  = 2.8 flow, we show results for 5 = 0.2 in figures 4(i) 
(ci) and 4(h) (c,) drawn as a broken line. These indicate qualitative similarity with the 
previous set of results; however, the maximum growth rate is reduced by 
approximately an order of magnitude. Again, unfortunately, positive identification 
of an upper neutral point was not possible, owing to the difficulties with tiny growth 
rates encountered at  larger values of a. We conclude, however, that curvature has 
important (and profound) effects: (i) annihilation of mode I and (ii) substantial 
reduction of the growth rate of mode I1 (although the range of a over which this 
unstable mode exists is increased quite significantly). 

We next turn our attention to results for M ,  = 3.8, and figures 6 (a )  and 5 ( b )  show 
ci and c, distributions (respectively) with a, for the particular case 5 = 0. Thia 
corresponds to the planar case as computed previously (Mack 1987 for example) and 
thus provides a useful check on the accuracy of the present overall scheme (which is 
seen to be entirely satisfactory). When compared with the correeponding Nm = 2.8 
results (figure 4a, b ) ,  the importance of mode 11 is seen to be significantly increased 
(although the growth rate of mode I is increased also), Generally, the M ,  c: 3.8 
distributions qualitatively resemble the corresponding M ,  = 2.8 distributions. 

At 5 = 0.05 (with M ,  = 3.8), we see in figures 5 ( c )  (c, distribution) and 5 ( d )  (cr 
distribution) that there is an approximate halving of the maximum growth rate, 
when compared with the 5 = 0 results. The results also indicate that the lower 
neutral point of mode I has moved along the positive real axis, and has (just as in 
the M ,  = 2.8 example) become very slightly supersonic. Further downstream, at  
5 = 0.10 (figures self) mode I has almost disappeared, whilst mode TI has suffered 
a further depletion of maximum growth rate. 

From our observations made in $6.2, we expect that mode I will completely 
disappear at  [ x 0.013 (where c, = wo(q = qi) = I - l/M,) ; this will also be an 
important location for the upper neutral point of mode 11, which for 5 < 0.013 is of 
the subsonic inflexional kind. As noted earlier, for the previous M ,  considered, 
growth rates in this regime were extremely small, and so no firm conclusions on the 
behaviour of this mode in this region were possible. Fortunately, although the 
growth rates in this critical region at  M ,  = 3.8 are small, they are nonetheless 
significantly larger than at the lower Mach number. 

The solid line in figure 5 (9) details the local variation of ci with a a t  5 = 0.112 (just 
below the critical value). Mode I1 is clearly seen to become damped a t  a z 0.85, with 
(cil reaching a maximum at a z 0.93, and then decreasing. Unfortunately, no firm 
conclusions are possible regarding the ultimate behaviour of ci a t  large values of a, 
owing to the smallness of JcJ.  

The dashed line in figure 5 ( g )  represents the distribution of ci in the same critical 
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region of a, a t  5 = 0.114 (slightly above the critical value of 5).  It now appears that 
the growing mode I1 terminates at a x 0.94, as a supersonic neutral mode, and does 
not continue as a damped mode. (The kink observed on this section of the curve was 
confirmed by numerical experimentation.) Instead, a further (supersonic) neutral 
mode has already appeared (at a x 0.88) and this is then the origin of a damped 
mode, which has a maximum value of lcil a t  a x 0.95 ; lcil then decreases towards zero, 
and again because of its ultimate smallness, no conclusions regarding its behaviour 
a t  larger values of a are possible. Additionally, there was some evidence of another 
unstable mode, beginning a t  around a x 1.52, but because of its very small growth 
rate it is not possible to be completely categorical about this; its growth rate was also 
too small to be seen on the scale of figure 5(h) .  Thus in this case we see the presence 
of possibly three (supersonic) neutral points in this regime. 

The dotted line in figure 5 (9)  details the variation of ci in the crucial a-region, for 
the location fs = 0.116. Again, (growing) mode I1 is seen to terminate a t  a supersonic 
neutral point, this time located a t  a x 1.  The kink on this section of the curve was 
again checked numerically. A further supersonic neutral point exists, originating at 
a x 0.9 which then provides the start for a decaying mode ; when compared to the 
corresponding 5 = 0.114 mode, the decay rate of this particular mode is seen to be 
reduced. Further, this mode now seems to terminate at another neutral point (at 
a x 1 .48). Yet another neutral point exists a t  a x 1.40, which then provides the start 
of a second unstable mode (although the growth rate of this mode was so small as to 
be barely visible on figure 5 9 ) ;  a total of four supersonic neutral points are thus 
observed in this region of a .  

The dot-dashed line in figure 5 (9)  shows the ci distribution at fs = 0.1 18 in the same 
general region of a. When compared with the previous results, a further change to the 
qualitative picture is seen. Here, the original mode I1 has merged with the second 
unstable mode. Just two neutral points remain in this region, a t  a x 0.93 and a x 
1.35, which are associated with the start and the terminus of the decaying mode 
(which generally has a significantly reduced JciJ compared to the previous results). 
The ultimate behaviour of the growing mode with a remains unclear, owing to the 
smallness of lei(. 

It is interesting to note that when two modes were present (for a given value of a), 
both modes had values of c, that were practically indistinguishable. Further, there 
was no difficulty in calculating accurate values of c,, even at large values of a. 

Moving further downstream to 5 = 0.2, the decaying mode has disappeared 
completely, and ci and c,  distributions over a broad range of a are shown in figures 
5 (h )  and 5 (i) (solid line) respectively. When compared with the figure 5 ( e )  results, the 
mode I1 growth rates are quite appreciably reduced; the ultimate behaviour of IciJ a t  
large values of a remains unclear. 

Further downstream still, at fs = 1.0, the results (ci shown in figure 5(j ) ,  c, shown 
in figure 5 ( i )  as a dashed line) are qualitatively similar to those at 5 = 0.2, except 
that the maximum value of ci is significantly diminished, and occurs at a rather 
larger value of a (as does the origin of this mode which occurs at a x 0.72, compared 
with a z 0.4 in the case of 5 = 0.2). The larger-a behaviour of this mode is again 
unclear, because of the reasons described above. 

In the following section we consider a number of general conclusions and points 
raised by this work. 



Inviscid axisymmetric stability of flow along a circular cylinder 635 

7. Conclusions 
I n  this paper the supersonic flow over a thin straight circular cylinder has been 

investigated. The basic boundary-layer flow has been obtained, and the inviscid 
stability of the flow has been studied. A condition on the basic flow for the existence 
of so-called subsonic inflexional neutral modes of instability has been derived, and is 
found to be an extension of the generalized inflexional condition relevant to planar 
flows. 

The effect of body surface curvature is seen to immediately (and significantly) 
reduce the importance of the ‘first mode’ of inviscid instability, which is seen to 
completely disappear a t  what could be a comparatively short distance down the axis 
of the cylinder (by about 0.0022C-lRe body radii a t  M ,  = 2.8, and by about 
0.013C-lRe body radii at M ,  = 3.8). 

The maximum growth rate of the ‘second mode’ of inviscid instability also suffers 
a substantial reduction a t  locations increasingly further down the axis of the 
cylinder, although the evidence is that it does not disappear completely. 

It is also useful to note that since in many cases computed the temporal growth 
rate is small, although the study here has been entirely confined to temporal 
instabilities, the transformation of Gaster (1962) could be expected to yield 
reasonably accurate estimates for the corresponding spatial instability problem. 

There are certain similarities here with the effect of cooling a planar boundary 
layer (Mack 1984, 1987, for example), which can also cause the first mode to 
disappear completely (cooling also causes the formation of a second generalized 
inflexion point, which with a progressive reduction in wall temperature eventually 
coalesces with the first generalized inflexion point). However, the effect of cooling is 
to  increase the amplification rate of the second mode (in contrast to our results 
featuring curvature). 

It is particularly interesting to note that although inviscid modes of instability are 
generally regarded as more important/unstable than viscous modes of instability in 
the case of supersonic planar flows, the work of Duck & Hall (1989, 1990) on viscous 
axisymmetric flows indicates that a reduction in body radius (equivalent to a further 
downstream location in our context) causes an increase in amplification rate. Thus 
it is entirely possible that with axisymmetric flows, regimes may exist where viscous 
instability is dominant. 

It is to be hoped that this study will provide a basis for the study of flows over 
further and more practical geometries, such as cones. One important omission from 
the physics of that  problem, which must ultimately be resolved, is the exclusion of 
any shock waves in the basic flow (however, this may be justified by the restriction 
of thinness), although previous works on planar flows (cited throughout this paper) 
all have this same omission. It is also hoped that these results will provide material 
for comparison with finite-Reynolds-number computations. 

Finally, here just axisymmetric modes have been considered and it may well be 
that non-axisymmetric modes are important ; this aspect is currently under 
investigation. 
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